High-Quality Hexagonal Nonlayered CdS Nanoplatelets for Low-Threshold Whi...
Low insertion loss silicon-based spatial light modulator with high reflec...
Effect of Nanodisks at Different Positions on the Fano Resonance of Graph...
Adaptive Sample-Size Unscented Particle Filter with Partitioned Sampling ...
High-resolution and fast-response optical waveguide temperature sensor us...
Optical phase matching of high-order azimuthal WGM in a water droplet res...
Interface-driven unusual anomalous Hall effect in MnxGa/Pt bilayers
A discussion on mass resolution in secondary ion mass spectrometry
Improvement of beam quality for fiber-coupled diode-side-pumped Nd:YAG ro...
Applications of Fiber Optics Sensors in Seismology

Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field



Author(s): Wu, XG (Wu, Xiaoguang)

Source: CHINESE PHYSICS B Volume: 28 Issue: 10 Article Number: 107302 DOI: 10.1088/1674-1056/ab3c29 Published: SEP 2019

Abstract: The optical response of an inverted InAs/GaSb quantum well is studied theoretically. The influence of an in-plane magnetic field that is applied parallel to the quantum well is considered. This in-plane magnetic field will induce a dynamical polarization even when the electric field component of the external optical field is parallel to the quantum well. The electron-electron interaction in the quantum well system will lead to the de-polarization effect. This effect is found to be important and is taken into account in the calculation of the optical response. It is found that the main feature in the frequency dependence of the velocity-velocity correlation function remains when the velocity considered is parallel to the in-plane magnetic field. When the direction of the velocity is perpendicular to the in-plane magnetic field, the depolarization effect will suppress the oscillatory behavior in the corresponding velocity-velocity correlation function. The in-plane magnetic field can change the band structure of the quantum well drastically from a gapped semiconductor to a no-gapped semi-metal, but it is found that the distribution of the velocity matrix elements or the optical transition matrix elements in the wave vector space has the same two-tadpole topology.

Accession Number: WOS:000497719900002

ISSN: 1674-1056

eISSN: 1741-4199

Full Text: https://iopscience.iop.org/article/10.1088/1674-1056/ab3c29


北京市海淀區清華東路甲35號 北京912信箱 (100083)




[email protected]

版權所有 ? 中國科學院半導體研究所

備案號:京ICP備05085259號 京公網安備110402500052 中國科學院半導體所聲明